
research papers

770 Viktor Ignatiev � Interatomic distances and sizes of ions Acta Cryst. (2002). B58, 770±779

Acta Crystallographica Section B

Structural
Science

ISSN 0108-7681

Relation between interatomic distances and sizes of
ions in molecules and crystals

Viktor Ignatiev

Institute of Geology, 167982 Pervomaiskaya 54,

Syktyvkar, Russia

Correspondence e-mail: min@geo.komisc.ru

# 2002 International Union of Crystallography

Printed in Great Britain ± all rights reserved

Bond lengths and dissociation energies in alkali halides and

alkaline earth oxides and ¯uorides have been analysed. Ions

are considered as static deformable spheres, where an

essential part of the electron density is concentrated. In

molecules, they are compressed. Moving from molecules to

crystals, the bond lengths are extended to such an extent that

closed electron shells of ions in alkali halide crystals are

separated by distances of �20 pm owing to weakened

Coulomb attractive forces acting in opposite directions in a

crystal. Short-range repulsion is important only within a few

surface layers. Some ionic radii are approximately estimated.
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1. Introduction

Bond lengths or the shortest interatomic distances (IDs) in

molecules and crystals are determined by the character of the

interatomic interactions and the sizes of the atoms (ions). Ions

cannot be assigned de®nite radii because of their quantum-

mechanical nature. Both semiempirical (Pauling, 1960) and

quantum-chemical (Bader, 1990) considerations state that

neighbouring cations and anions have a common boundary.

All experimental and theoretical estimations of the distribu-

tion of electron density in ionic crystals and molecules show

that it is not equal to zero anywhere along the bond line

between a cation and an anion, and the effective charges of the

ions are always less than their formal oxidation states (Brown

& Spackman, 1991; Tsirelson et al., 1998; Vidal-Valat et al.,

1978; Witte & Wolfel, 1958). However, there are dif®culties

with determining the boundaries of ions and ionic charges

(Bader, 1990; Clark, 1985; Tsirelson & Ozerov, 1996).

In the empirical crystal chemistry of ionic solids, the ID is

determined by the radii of the cation (Rc) and the anion (Ra),

which are considered as hard or soft (deformable) spheres,

being in close contact or compressed (Pauling, 1960; West,

1988). This simplest classical model implies that in both

molecules and crystals the equilibrium IDs are governed

mainly by electrostatic attraction and elastic repulsion of the

electron shells according to the equation (Kittel, 1956;

Animalu, 1977)

U�r� � Eq�r� � Erep�r�; �1�

where U is the potential of interaction. Eq = ÿ�kq1q2/r and

Erep = bexp(ÿr/�) are the Coulomb or Madelung and the

Born±Mayer (B±M) potentials, respectively; � is the Made-

lung constant of an in®nite crystal lattice, � = 1 for diatomic

molecules; q1 and q2 are the formal ionic charges; b and � are

empirical parameters; k = 9 � 109 N m2 Kÿ1.

In the case of diatomic molecules, (1) has a transparent

physical meaning: derivatives of the Coulomb and B±M



potentials are the forces acting in opposite directions and

balancing each other at the equilibrium point.

However, in a large crystal that exhibits no widening of

X-ray diffraction lines, every ion is surrounded by millions of

other ions. In fact, any crystal lattice can be considered as an

almost in®nite static one, where the equilibrium positions of

ions are a result of attractive electrostatic forces acting in

opposite directions. In an in®nite electrostatic lattice, ions can

have any de®nite size in the range Rca � ID, where

Rca = Rc + Ra. This paper is concerned with just the static

approach to the interatomic interactions in a crystal lattice,

because the observed IDs are static quantities. Since the work

of J. J. Thompson, it has been well known that any ®nite

electrostatic system is unstable and should collapse in a ®nite

time while dynamically any system of point charges is unstable

(Jeans, 1946; Tsirelson & Ozerov, 1996). Therefore, repulsion

of electron shells should always be present in crystals, even

within the framework of the static approach. Does it act on

every ion or only on some ions? The scalar potential (1)

implies that it acts on every ion, but this is not obvious.

Therefore, whereas in molecules the contact of ions (atoms)

is obligatory because of the polar character of the attractive

forces that act on a given ion, in crystals the ions might not

have common boundaries and therefore (1) might not provide

the true equilibrium conditions. In order to de®ne a suf®-

ciently accurate relationship between the sizes of ions and the

IDs in a crystal, one should start by analysing the relationship

in molecules where possible.

In this paper, the equilibrium parameters of ion±ion inter-

actions in molecules and crystals of some of the most ionic

substances (alkali halides MX, alkaline earth oxides MO and

¯uorides MF2) have been compared in order to ®nd a physi-

cally meaningful empirical model of the interrelation between

the IDs and sizes of ions.

2. Theoretical procedure

2.1. Diatomic ionic molecules

Based on the observations of Slater (1964, 1965) on the

interrelation between atomic and ionic radii, one can conclude

that the sum of the radii of the cation and the anion is the same

in a molecule and in a crystal, despite changes in the sizes of

ions with the degree of charge transfer (Batsanov, 1986). This

allows one to apply to a free diatomic molecule a simple model

of deformable or overlapped spheres (Pauling, 1960). This is a

good approximation at least for alkali halide molecules, in

which the bonding is presumably ionic (Pauling, 1960; Hofer &

Ferreira, 1966; Solomonik & Sliznev, 1998). The model takes

into account that both the repulsion and the covalent binding

depend on overlapping of the wave functions (Kittel, 1956;

Slater, 1965; Kumar et al., 1986; Tsirelson & Ozerov, 1996;

Marks et al., 2001; Fernandez Rico et al., 2002). Thus the ID in

a molecule is given by

Rm � Rca ÿ dRm; �2�

where dRm is the deformation (overlap) of electron shells of

ions and Rca is the sum of ionic radii as de®ned in x1. Defor-

mation means the length of the area of overlap of two spheres

along the bond line, but it is expressed as (and equals, if the

ions are spherical) the difference of IDs: dRm ' Rca ÿ Rm.

Obviously, (2) is approximate because ions are not exactly

spherical (Bader, 1990; Gibbs et al., 1998). However, according

to the Bader (1990) model of ion polarization, based on the

Hellmann±Feynman electrostatic theorem, the charge

increase in the binding region of anion Xÿ exceeds that in its

antibinding region (the Xÿ ion is polarized towards the M+

ion) and the charge distribution of the M+ ion is polarized

away from the anion. Consequently, the interrelation of

internuclear distances and the degree of overlap of spherical

electron clouds is not substantially different to that for

polarized electron clouds. Besides, these polarizations are a

necessary requirement for the attainment of electrostatic

equilibrium in the face of a complete charge transfer from

cation to anion. However, the charge transfer is not complete

in alkali halide single molecules (Bader, 1990) and dimers

(Solomonik & Sliznev, 1998).

One of the objectives of the present work is to argue that

the ions' closed electron shells are separated in alkali halide

crystals. That is, the aim is to prove the following equation:

Rcr � Rca � dRcr; �3�
where Rcr is the ID and dRcr is the distance between bound-

aries of counterions in a crystal.

However, as a starting point it is reasonable to accept the

close-packing model, according to (1). Provided that in a

crystal MX (high-temperature phase B1) the ions touch or

slightly compress each other, one may consider the difference

dRcrm between IDs in the crystal and in the corresponding

molecule as the deformation of ions (dRm) in the latter:

dRcrm � Rcr ÿ Rm � dRcr � dRm; �4�

dRcrm ' dRm; dRcr � 0: �5�
To check the validity of the equality dRcrm = dRm, one can

analyse the covalent contribution to the dissociation energy of

molecules as a function of the deformation. In general, the

magnitude of the ground-state dissociation energy of a

diatomic molecule (D0) equals the algebraic sum of four main

terms (Hofer & Ferreira, 1966; Urusov, 1995):

ÿU�r; i� � Eq�r; i� � Ecov�r; i� ÿ Erep�r; i� ÿ�E�i�;
D0 � ÿU�Rm; i� �6�

where Eq = kqc qa/r is the magnitude of the Coulomb energy;

qc and qa are the net charges of the cation and the anion,

respectively; Ecov and Erep are the unde®ned energies of the

covalent attraction and of the repulsion of electron shells,

respectively, although they can be taken in the form of the

Morse potential:

EM�r� � D�exp�2��r� ÿ 2 exp���r��: �7�
D is the numerical value of the covalent binding energy,

�r = R ÿ r (R is the sum of the covalent radii of the atoms),
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� = ÿ(2�)ÿ1 is an empirical parameter and � was de®ned in

(1). �E is the energy of charge transfer,

�E�i� � i�I ÿ EA�; �8�
where I is the ionization energy of the metal, EA is the elec-

tron af®nity of the electronegative atom and i is the ionicity of

the bond. The difference �r in the Morse potential equals the

deformation dRm if R = Rca.

To discover how the covalent contribution to the bonding

depends on the deformation dRm in a set of molecules, one can

analyse the difference of the terms Ecov and Erep,

dE�R j
m; i� � Ecov�R j

m; i� ÿ Erep�R j
m; i�

� D0�R j
m; i� ��E�i� j ÿ Eq�R j

m; i�; �9�
as a function of dRcrm. This is feasible for alkali halides,

because there is a complete set of accurate experimental data

for ionization and electron-af®nity energies of atoms and

interatomic distances, dissociation energies and dipole

moments (�) of molecules from which the net ionic charges qc

and qa can be derived (Batsanov, 1986):

qc � qa � ie � e� � �=Rm: �10�
Also, the term Erep does not signi®cantly affect the depen-

dence Ecov(dRcrm), because it is expected to be small

compared with Ecov and because both the covalent attraction

and the electron-shell repulsion certainly depend on the

deformation in the same fashion: the greater dRm, the greater

Ecov and Erep. Finally, the difference dE itself may be regarded

as the magnitude of the effective covalent energy, like the

coef®cient D in the Morse potential. It is natural to assume

that at distances where dE � 0, covalent bonding is absent and

the repulsion is very weak compared with the electrostatic

attraction.

The trends in the variations of the ID differences in mole-

cules MNX and MN+1X,

�Rm � Rm�N�1� ÿ RmN; �11�
and in corresponding crystals,

�Rcr � Rcr�N�1� ÿ RcrN; �12�
where N = 1, 2, 3, . . . for the ®rst, second, third, . . . row main

group cations of the periodic table, seem to provide some

information on the polarization and other effects that are

beyond the static model of deformable spheres.

2.2. Crystal lattice

The objective of lattice calculations is to determine how the

long-range electrostatic forces in¯uence the ID and the

deformation of ions. To understand the process of extension of

ID, one has to model sets of ions beginning with a diatomic

molecule (MX)1 through clusters (MX)n to a crystal

(MX)n!1. A priori, it is evident that there are two factors

affecting the ID in the bulk of a crystal lattice:

(i) the weakening of the attraction between the cation and

anion that formed the initial molecule due to electrostatic

cation±cation and anion±anion repulsions;

(ii) the action of attractive forces on an ion in opposite

directions.

While it is dif®cult to quantify the in¯uence of the latter

factor, one can compare values of electrostatic forces that act

on an ion along the bond line in a diatomic molecule with

those for the corresponding crystal with the same ID and ionic

charges. The author failed to ®nd any references on the

summation of static force vectors within crystal lattices,

possibly because of the existence of well developed methods

of Madelung summations (Kittel, 1956; Mestechkin, 2000) and

the general rule that force is the ®rst derivative of potential.

However, this statement cannot be applied to the relationship

between the Madelung potential and the force. As it is

impossible to calculate the magnitude of the force directly

from the Madelung potential, one needs to sum the force

vectors of pairwise interactions.

The force acting on an ion in the structure of halite (B1)

along the [001] polar direction within a hemispace can be

calculated by the formula

F001 � ke2
X

ÿ1� � j cos j=R2
j

� �
� �ke2=R2

cr�
X

ÿ1� � jp= m2 � n2 � p2
ÿ �ÿ3=2

h i
� �f ke2=R2

cr; �13�
where  j is the angle between the [001] axis and the radius

vector Rj connecting the ion placed at the origin of the

Cartesian system with the j th ion [Rj in (13) is the magnitude

of the vector]; j = m + n + p where m, n, p = 0, 1, 2, 3 . . . are

the coordinates of the ions; �f is the static force constant for

the [001] direction. Equation (13) is very simple and was

deduced using a standard procedure for addition of projec-

tions of vectors on the [001] axis.

It is well known that the results of a summation in real space

depend on the area of summation. The magnitudes of the sum

and convergences of the series may be quite different. In this

paper, two electroneutral areas were selected: cubes and areas

restricted by a surface where every term (tj) in brackets in (13)

is less than a given small number, �t ! 0, that is within

sequential in®nite layers perpendicular to the [001] axis. In the

author's opinion, the latter procedure is more correct. Manual

calculations have been performed. At present, a homemade

computer program that allows the calculation of the magni-

tudes of forces acting along the [001] and [111] directions

within the B1 structure is being tested and developed.

3. Results

3.1. Correlation between differences of interatomic distances
in molecules and crystals, dissociation energies, and ionic
charges in molecules of alkali halides

Table 1 presents experimental data for D0, e* and dRcrm

accompanied by calculated dE. The data for D0, e* and ID are

retrieved from Batsanov (1986), with references therein to

thermochemical data from NBS Technical Notes (Wagman et

al., 1973), CODATA (1978), Termicheskie Konstanty

Veschestv (1981) and Pedley & Marshall (1983), on dissocia-



tion energy, and to Lovas & Tiemann (1974) on dipole

moments. The data for D0 do not differ from those listed by

Huber & Herzberg (1979) except for slightly lower values of

the dissociation energy (by 0.00ÿ0.07 eV) of RbX compared

with KX. This discrepancy demonstrates the level of accuracy

of D0 thermochemical measurements. It is high enough for the

interpretation of the data of Table 1, which do not differ

signi®cantly from earlier data by Cottrell (1958). The biggest

discrepancy is observed for the NaF molecule (448 kJ molÿ1

against 477 kJ molÿ1 in Table 1). Even this error does not

disturb the general trend of variation of D0: it decreases from

¯uorides to iodides and from sodium to caesium halides

(Table 1).

The IDs are measured with an error not larger than 1.0 pm

(WWW-MINCRYST, 2000; Batsanov, 1986; Sutton, 1958;

Gray, 1965; Hartley & Fink, 1987, 1988; Lapshina & Girichev,

1991; Lapshina et al., 1989). From analysis of the literature, it is

seen that the largest scatter is observed in the dipole moment

measurements. Corresponding values of ionic charges differ

by up to 0.11e. For example, according to the data of

McClellan (1963), the dipole moments of KF and KI molecules

are 8.60 D and 9.24 D, respectively. Corresponding charges are

0.89e and 0.62e, in contrast to 0.82e and 0.73e in Table 1. It is

reasonable to assume that the data by Lovas & Tiemann

(1974), obtained using the molecular-beam electric-resonance

method for the whole set of alkali halide molecules, are more

reliable. The author failed to ®nd more recent data, except for

LiF and BeO molecules (Yoshioka & Jordan, 1981), and these

agree with the previous data. According to the calculations of

Bader (1990), ionic charges in lithium, sodium and potassium

¯uoride and chloride molecules vary from 0.91 to 0.94.

The trends of variation of D0 from lithium to caesium

halides and from ¯uorides to iodides (Table 1) are strongly

in¯uenced not only by the electrostatic energy but also by the

charge-transfer energy and, hence, by the electronegativities

of atoms. Pauling's electronegativity rule is a traditional

explanation of experimental data for alkali halide and other

polar molecules (Pauling, 1960; Gray, 1965; Matcha & King,

1976; Batsanov, 1986; Allen, 1989; Gibbs et al., 1997, 1998).

From this point of view, the charge transfer from metal to

halogen atom is most complete in the CsF molecule, and the

low values of the dipole moment and the effective charge e* of

the molecule are due to polarization of the metal atom

(Matcha & King, 1976).

Table 1 demonstrates a correlation between the three

independently measured experimental quantities: D0, e* and

dRcrm. It is well de®ned in ¯uorides and chlorides and to a

lesser extent in bromides and iodides. This allows us to

suppose that the interaction between atoms in the molecules is

governed by charge transfer due to the large differences

between the electrochemical potentials of the atom species,

but the charge transfer is limited by the plasticity of atoms

compressed by the electrostatic attraction. The simple model

of overlapped spheres is in fairly good agreement with this

supposition and the observed correlation. According to the

model, the covalent energy depends on the magnitude of the

deformation and would not differ signi®cantly in various

molecules for the same deformation. However, the Coulomb

attraction depends on the interatomic distance and decreases

from LiF to CsI. Consequently, the covalent contribution to

the cohesive energy tends, in general, to increase from ¯uor-

ides to iodides and from LiX to CsX, whereas the decrease of

ionicity of the bond is not obligatory. The equilibrium state of

an alkali halide molecule results from competition between

the degrees of charge transfer and overlapping, which in turn

depend on intrinsic properties of the ions' electron shells. In

both the dynamic and the static cases, the decrease in over-

lapping leads to an increase in the electrostatic attraction that

compresses the ions. Vice versa, a decrease of the electrostatic

attraction due to a larger ID results in a decrease of the

overlap and corresponding covalent energy. The role of this

factor is manifested by the smallest ionic charges and the

largest dRcrm in CsF among other caesium halides (Table 1).

The conventional opinion on the highest ionicity of the NaF

molecule (Sanderson, 1976; Batsanov, 1986) is also in good

agreement with the data of Table 1.

Within the framework of the proposed model, the consid-

erable increase of dRcrm and decrease of e* from the left to the

right of Table 1 in Li and Na halides and from KF to CsF is

caused by the increasing radii (hence, plasticity and polariz-

ability) of halogen and metal ions and a suf®ciently strong

electrostatic attraction due to moderate IDs. Variation of

dRcrm and e* in the K, Rb, Cs series from ¯uorides to iodides
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Table 1
Differences of interatomic distances (pm)², effective ionic charges (e)
and dissociation energies of molecules (kJ molÿ1) of alkali halides.

Calculated quantities are in italics.

Cation

Anion Quantity Li+ Na+ K+ Rb+ Cs+

Fÿ dRcrm 45 38 50 55 65
e* 0.84 0.88 0.82 0.78 0.70
�Rm 37 24 10 8
�Rcr 30 36 15 18
D0 573.2 477.0 494.0 502.0 510.4
dE 106 67 138 188 254

Clÿ dRcrm 55 46 48 50 56
e* 0.73 0.79 0.80 0.78 0.74
�Rm 34 31 12 12
�Rcr 25 33 14 18
D0 472.8 408.4 422.6 427.0 440.2
dE 231 157 147 167 199

Brÿ dRcrm 58 49 48 48 55
e* 0.70 0.79 0.78 0.77 0.73
�Rm 33 32 13 12
�Rcr 24 31 13 19
D0 420.1 376.1 385.0 393.7 396.0
dE 243 165 159 175 192

Iÿ dRcrm 61 53 48 51 51
e* 0.65 0.71 0.74 0.75 0.73
�Rm 32 34 13 14
�Rcr 24 29 14 16
D0 349.4 306.7 321.3 324.2 333.7
dE 249 191 163 160 169

² dRcrm for CsCl, CsBr and CsI in the B2 structure are 65, 65 and 63 pm, respectively.
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tends to be in the opposite direction because of a weaker

electrostatic attraction. Actually, both I and EA are closely

related to the radii of the atoms. When atoms form a molecule,

the degree of overlapping of electron shells also depends on

their radii. One could say that a larger atom has a more plastic

or soft electron shell (Butter®eld & Carlson, 1972). Therefore,

CsF or CsCl might not be the most ionic molecules despite

having minimal �E and the highest differences between the

electronegativities of the atoms.

Table 1 presents the numerical values of dE calculated

according to (9) using the values of D0 and e* in Table 1. It is

seen that, in general, the behaviour of dE is the inverse of that

of e*, and it decreases by a factor of 3.8 from CsF to NaF. As

mentioned in x2.1, the repulsive energy would be small

compared with the covalent energy. Actually, the covalent

bonding is controlled by the Coulomb attraction and its

energy would be, in general, lower or approximately equal to

the Coulomb energy. The range of dE (Table 1) satis®es this

statement. Only in LiI does the increment dE (249 kJ molÿ1)

slightly exceed Eq (245 kJ molÿ1). It seems realistic to impose

a maximal Erep of 50 kJ molÿ1 in the strongly deformed CsF

and LiI molecules and a minimal value of 20 kJ molÿ1 in NaF.

Since Ecov and Erep increase with increased deformation, the

trends of variation of dE certainly re¯ect those of Ecov to a

large extent. Hence, dE is an accurate indicator of the covalent

bonding as assumed in x2.1.

Fig. 1 shows a plot of dE versus dRcrm, which was obtained

using standard Microsoft Excel 5 facilities. From the attached

equations in Fig. 1, it follows that the dependence dE(dRcrm) is

well approximated by a straight line that intersects the

abscissa at (dRcrm)0 = 27 pm. The ®tting parameter R2 for the

exponential curve is notably smaller than that for the straight

line. If the extrapolation of the dependence down to dE = 0

using this straight line is valid, the interval to the left of the

intersection point is the mean distance between counterions'

electron shells in alkali halide crystals (dRcr)0 while the

remaining intervals on the right are the deformations of the

ions in molecules (dRm)j. According to Table 1 and Fig. 1, the

latter values vary from 11 pm in NaF to 38 pm in CsF.

However, one cannot be fully con®dent of the accuracy of

such an extrapolation. In view of the above discussion, this

uncertainty can be diminished by a small shift of the inter-

section point to a nearly arbitrarily chosen value

(dRcrm)0 ÿ 7 = 20 pm.

It is worth noting that the range of dRm includes that of the

empirical parameter � in the B±M potential (1). This para-

meter varies from 23 pm in CsF to 38 pm in CsI molecules

(Varshni & Shukla, 1963). Within the model of deformable

spheres (Butter®eld & Carlson, 1972; Gilbert, 1968; Narayan

& Ramaseshan, 1978) it consists of the parameters of indivi-

dual ions: � = �j + �i. The sum �j + �i varies bewteen 25.7 pm

(LiF) and 36.2 pm (KI) and tends to increase from LiF to CsI,

in general (Narayan & Ramaseshan, 1978). The parameter �
has the dimensionality of length and indicates the softness of

the bond (Butter®eld & Carlson, 1972): it gives the distance at

which the B±M potential decreases e ' 2.73 times. Although �
is not a variable in the repulsion potential, it is determined

only for the equilibrium state of molecules and could be

referred to as the deformation dRm.

Thus, there are grounds to assume that within the empirical

model, extension of IDs in alkali halides from diatomic mole-

cules to crystals leads to the separation of closed electron shells

of counterions and (2) and (3) are valid. This allows one to

obtain a novel set of approximate values of ionic radii. With

regard to the conventional accuracy of the determination of

radii, about �5 pm (Batsanov, 1986), and the roughness of the

proposed model, it is allowable to accept the value obtained

above, dRcr = 20 pm, as being constant for all alkali halide

crystals.

As a starting point in estimating the ionic radii, the crystal

radius of the Fÿ ion (119 pm) (Fumi & Tosi, 1964) was chosen,

based on the analysis of electron-density maps (Witte &

Wolfel, 1958; West, 1988), with the goal of comparing the

results with the crystal radii (CR) and effective ionic radii (IR)

for the coordination number (CN) 6, represented in Table 1 of

Shannon (1976). It is worth remembering that CR differs from

IR only by a constant factor of 14 pm: for cations CR > IR and

for anions CR < IR (Shannon & Prewitt, 1969; Shannon,

1976). The cation radii were derived by applying (2) to

¯uorides. Then the radii of Clÿ, Brÿ and Iÿ were estimated

and averaged.

The results of the evaluation are presented in Table 2. The

derived radii of the cations are smaller by 5±14 pm than the

corresponding IR radii, but agree to within �4 pm, on

average, with the respective Pauling (1960) radii. The mean

values of the anion radii are very close to the corresponding

CR radii of the Shannon±Prewitt system. Equations (2) and

(3) imply that Rc and Ra are the radii of the free ions. For

cations, the free-ion electron densities have usually been

found to be suf®cient to evaluate the interaction energy in

crystals by the Hartree±Fock equations (Allan & Mackrodt,

1994). The obtained values of ionic radii agree with those

estimated by Butter®eld & Carlson (1972) for a de®nite level

of charge density (BCR): 69, 95, 125, 137 and 153 pm for

respective cations and 118, 145, 154 and 166 pm for anions.

Comparatively lower values of the BCR radii of the larger

ions, especially of the anions, correspond to the increase of the

Figure 1
Correlation between dE and dRcrm.



number of electrons from 0.076 (Li+) to 0.730 (Cs+) and from

0.639 (Fÿ) to 1.500 (Iÿ) outside a sphere con®ned by the BCR

radius (Butter®eld & Carlson, 1972).

Calculated values of the anion radii in Table 2 scatter widely

and the deviations increase from Clÿ to Iÿ. This may be caused

by polarization of the ions and by the quantum-mechanical

uncertainty in ion sizes, neither of which are accounted for by

the static model of deformable spheres. It is likely that the

observed tendencies of variation of increments �Rm and �Rcr

(Table 1) have the same nature. For instance, an increase of

the deformation dRm from 25 pm (LiF) to 35 pm (LiCl) in

comparison with the respective values 18 pm (NaF) and 26 pm

(NaCl) would extend �Rm from 37 pm (NaF±LiF) to 39 pm

(NaCl±LiCl), but it actually decreased to 34 pm (Table 1). In

the sodium/lithium bromide and iodide pairs this difference is

even smaller. Similar changes are characteristic for �Rcr. In

contrast, the KÐNa halide pairs demonstrate a considerable

increase of �Rm and a decrease of �Rcr from ¯uorides to

iodides (Table 1).

3.2. Comparison of the forces acting between cations and
anions in molecules and crystals

The results of calculations for a set of cubic `clusters' of the

ordered B1 structure, made according to (13), show that in

clusters with volumes larger than V = (16 � 16 � 16)R3
cr, the

resulting force of electrostatic attraction is approximately

constant and 4.25 times weaker than that in a free molecule

given that other parameters are equal

(Table 3). If F001 is calculated within an area

restricted by a surface where tj < �t (13), its

value is 3.35 times1 less than that in the initial

molecule (Table 4). From comparison of �f of

layers 1 and 2, one can see that in the ®nal

crystal structure only attraction to the nearest-neighbour layer

is important.

Furthermore, ions from the other hemispace attract the

given ion with a force of the same magnitude. One can

approximate this situation by the interaction between a

central cation and two anions in a linear triatomic XÐMÐX

pseudomolecule. The ®rst signi®cant difference between the

usual MX2 molecules and this pseudomolecule is the absence

of electrostatic repulsion between the anions in the latter.

Actually, Table 4 demonstrates that there is a very weak

interaction between a given ion and the second layer. One can

now predict the extension of ID due to the weakening of the

electrostatic attraction, given that the repulsion potential for

the corresponding molecule is correct. If the B±M repulsion

potential (1) and the value �f = 0.299 (Table 4) are used, this

distance equals 1.2�, which does not differ signi®cantly from

the recommended values dRm and certainly is shorter than

dRcrm in alkali halides (Tables 1 and 2).

The phenomenon of the lengthening of IDs from molecules

to crystals is well studied experimentally and theoretically.

Electron diffraction measurements (Hartley & Fink, 1988;

Lapshina & Girichev, 1991; Lapshina et al., 1989) and ab initio

calculations (Solomonik & Sliznev, 1998) of diatomic mole-

cules MF and dimers M2F2 (M = Li, Na, K) show that the IDs

increase from 156.39, 192.60 and 217.15 pm to 173.7, 207.2 and
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Table 3
Calculation of the electrostatic force constant in `clusters' of the ordered B1 structure along
the [001] direction.

�f

Layer 2 � 2 � 2 4 � 4 � 4 8 � 8 � 8 12 � 12 � 12 16 � 16 � 16 20 � 20 � 20

1 ÿ0.356 ÿ0.318 ÿ0.316 ÿ0.312 ÿ0.311 ÿ0.310
2 +0.140 +0.127 +0.125 +0.125 +0.123
3 ÿ0.077 ÿ0.076 ÿ0.075 ÿ0.073
4 +0.049 +0.049 +0.049 +0.048
5 ÿ0.031 ÿ0.030 ÿ0.030
6 +0.017 +0.016 +0.016
7 ÿ0.017 ÿ0.016
8 +0.007 +0.007
9 ÿ0.013
10 +0.013
Total ÿ0.356 ÿ0.178 ÿ0.217 ÿ0.228 ÿ0.236 ÿ0.235

Table 2
Deformations and radii of monovalent ions (pm).

IRc and CRa are the effective ionic radius (IR) of a cation and the crystal radius (CR) of an anion (Shannon, 1976), respectively; hRai and h�Rai are the mean
arithmetic values of an anion radius and its deviation. Entries in bold are the ®nal calculated values.

Anion

Fÿ Clÿ Brÿ Iÿ

Cation Rm dRm Rc (IRc) Rm dRm Ra Rm dRm Ra Rm dRm Ra

Li+ 156 25 62 (76) 202 35 175 217 38 193 239 41 218
Na+ 193 18 92 (102) 236 26 170 250 29 187 271 33 212
K+ 217 30 128 (138) 267 28 167 282 28 182 305 28 205
Rb+ 227 35 142 (152) 279 30 167 295 28 181 318 31 207
Cs+ 235 45 161 (167) 291 36 166 307 35 181 332 31 202
hRai (h�Rai) 119 169 (3) 185 (4) 209 (5)
CRa 119 167 182 206

Table 4
Calculation of the force constant within an area where
tj < �t.

�f

Layer �t = 0.0007 �t = 0.0002

First ÿ0.3010 ÿ0.2991
Second ÿ0.0023 +0.0006
Total ÿ0.3033 ÿ0.2985

1 Note that the sum (�f) is close but not equal to the Madelung sum divided by
the coordination number (�/6 = 0.291).
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236.4 pm, respectively. Rhombic geometries with IDs ranging

from 274 pm to 337 pm were observed in dimers Na2Br2,

K2Br2, Rb2Br2 and Cs2Br2 in the vapour phase (Hartley &

Fink, 1987), in contrast to the range 250±307 pm in respective

monomers (Table 2). A study of the X-ray absorption spectra

of the Na4Cl4 cluster shows that the ID is about 250 pm

compared with 236 pm in a NaCl molecule (Yalovega et al.,

2000). In (MgO)1/13 clusters, the interatomic distance increases

from 175 pm to 199 pm (de la Puente et al., 1997). Similar

structural relaxations were predicted for alkali halide clusters

(MX)1/10 (Aguado et al., 1997). These data demonstrate the

leading role played by the electrostatic repulsion in the

increase of ID from diatomic molecules to small clusters. The

lower values of dRcrm in alkaline earth ¯uorides MF2 (Table 5)

compared with those in alkali halides MX (Table 1) and

alkaline earth oxides MO (Table 6) are also caused by this

effect.

There is another crucial difference between the usual MX2

molecules and the XÐMÐX pseudomolecule. In the former,

the cation is certainly a centre of attraction. In the latter, it is

not. Here anions are also attracted by all other ions in opposite

hemispaces. The most natural way to demonstrate the effect of

the phenomenon on ID is to compare IDs in the bulk and at

the surface of a crystal. Madelung (1919) predicted the

shortening of ID between the ®rst and second surface layers.

There are many experimental facts implying the relaxation of

the surface layer(s) inward (Brown et al., 1999; Jona & Marcus,

1988; Somorjai, 1981, 1990). Most of the work was carried out

with metals, although some oxides were also studied. In

metals, the relaxation of the ID is up to 15% (Jona & Marcus,

1988). The effect of contraction is usually small (4±5% of the

bond lengths) and is sometimes presumably obscured by the

experimental [low-energy electron diffraction (LEED),

extended X-ray absorption ®ne structure (EXAFS) and other

methods] and theoretical uncertainty (Somorjai, 1981).

According to Somorjai (1981), the precision is about �10 pm.

The amplitudes of the atomic oscillations are of the same

order. The bond-length contractions at surfaces are consistent

with the observations made when adsorbates are deposited on

these surfaces: the shortened bond lengths are systematically

lengthened again (Somorjai, 1981). The different wavelengths

of IR absorption (�a) and re¯ection (�r) spectra in alkali

halides also indicate a shortening of IDs on the surface: �r < �a

(Kittel, 1956).

So, the positions of ions in the outermost surface layer are

governed by the polar electrostatic and, because of the

inevitable shortening of ID and overlapping of ions' electron

shells, covalent attractions and by repulsion of the electron

shells. As mentioned above, every ion in any electroneutral

layer within a hemispace of the ordered structure is attracted

only by the nearest-neighbour layer. It is evident that the

altered bonding at the surface would slightly affect the equi-

librium conditions of ions only in several near-surface layers,

although it is dif®cult to provide a rigorous mathematical

proof. An unlimited shortening of ID in a ®nite system of

point charges would be caused by the merging of the negative

and positive point charges at the surface. This maintains the

polar character of the attraction. In crystals, the ions do not

merge and continue to attract inner ions/layers. Therefore, in

the bulk of the structure, the equilibrium positions of ions and

IDs are not governed by repulsion of the electron shells but by

attractive forces acting in opposite directions. This is the

classical condition of equilibrium of ions in a crystal lattice.

Consequently, dRcr appears mainly as a result of the action of

attractive forces in opposite directions and Rcr does not

provide true information about the sizes of ions: it may be

smaller, equal to or larger than the sum of the ionic radii.

4. Discussion

4.1. Molecules

The results obtained in x3.1, support the validity of the

simple static model of deformable spheres for alkali halide

molecules as a ®rst-order approximation. Corrections can be

made to account for the polarizability of ions. According to

Bader et al. (1987), the net charge and the polarizability affect

the value of the dipole moment, �, in an approximately equal

measure. From the analysis made in x 3.1, particularly from the

observed correlation between the values of the deformation

dRm (= dRcrm ÿ 20), dissociation energy D0 and net ionic

charge e* (Table 1 and Fig. 1), one may conclude that polar-

ization plays a subordinate role in the alkali halide molecules

and, probably, contributes to the overlapping. Thus, the charge

transfer in these molecules is not complete and the experi-

mental values e* exhibited in Table 1 closely relate to real

ionic charges. Accordingly, there are grounds for assuming

that the interatomic interaction in molecules cannot be

described solely in terms of the scalar energy and electro-

negativity (electrochemical potential). One should also

account for geometrical constraints of the charge transfer,

Table 5
Results of evaluating the increments dRm and dRcr in alkaline earth
¯uorides.

Cation
Rm

(pm)
dRcrm

(pm)
D0

(kJ molÿ1)
IR
(pm)

dRm

(pm)
dRcr

(pm)

Be2+ 140 21 635.4 45 24 ÿ3
Mg2+ 177 22 517.9 72 14 8
Ca2+ 210 27 560.5 100 9 18
Sr2+ 220 31 549.0 118 17 14
Ba2+ 232 36 566.0 135 22 14

Table 6
Results of evaluating the increments dRm and dRcr in alkaline earth
oxides.

Cation
Rm

(pm)
dRcrm

(pm)
D0

(kJ molÿ1)
IR
(pm)

dRm

(pm)
dRcr

(pm)

Be2+ 133 32 446 45 38 ÿ6
Mg2+ 175 35 423 72 23 12
Ca2+ 182 58 477 100 44 14
Sr2+ 192 66 469 118 52 14
Ba2+ 194 82 569 135 67 15



namely for the polar character of electrostatic attraction,

which compresses the ions.

It is impossible to ful®l similar analyses for the alkaline

earth ¯uoride and oxide molecules. However, there is an

interrelation between the dissociation energies and differ-

ences dRcrm (Tables 5 and 6), similar to that in alkali ¯uoride

molecules (Table 1). The strongest deformations of the oxide

molecules (Table 6) qualitatively correspond to relatively

small values of their dipole moments (Huber & Herzberg,

1979; Yoshioka & Jordan, 1981) and are in a satisfactory

agreement with the proposed model, which assumes that the

degree of deformation (overlapping) and charge transfer are

governed by electrostatic attraction of ions.

4.2. Crystals

The obtained results indicate that the extension of bonds in

alkali halides results in the appearance of an empty space

between the cation's and anion's electron shells in crystals,

from the viewpoint of covalent bonding. The same seems to be

valid for alkaline earth ¯uorides and oxides. The more elec-

tronegative small Be2+ cation de®nitely tends to preserve

covalent bonding in crystals. This could be explained not only

by its ionization potential and electronegativity but also by the

high ionic strength (q/Rc) and hence the polarization effect of

the cation on the anion and by residual compression of the

ions. In alkali halide crystals, polarization is also important,

but it might not relate to covalent bonding, which is absent

according to the results obtained in x3.1 and x3.2. Actually, the

range of variation of the refraction index (nD) decreases from

lithium to caesium halides (Batsanov, 1986): 1.392 (LiF)±1.955

(LiI), 1.326 (NaF)±1.774 (NaI), 1.352 (KF)±1.667 (KI), 1.396

(RbF)±1.647 (RbI), 1.478 (CsF)±1.661 (CsI). The higher

values of the refraction index for higher CNs (Batsanov, 1986)

point to a dependence of nD on ID, and the given values of the

index indicate some intrinsic properties of ions (note the

lowest index for NaF, which consists of the hardest ions

according to the data of Table 1). However, the highest value

of nD in LiI apparently indicates that the iodine ion is strongly

polarized.

Gibbs et al. (1997) concluded that the average separations

between bonded atoms in oxide, ¯uoride and other kinds of

crystals are largely independent of the long-range forces.

Based on the data obtained and the considerations presented

in x3.2, one can conclude that it is necessary at least to take

into account the action of attractive forces in opposite direc-

tions. The relative magnitudes of electrostatic forces might

also be important. For example, the larger cation±anion ID

and the lower difference between cation±anion and anion±

anion IDs in CsCl for the denser B2 structure compared with

the eutactic B1 structure (O'Keeffe, 1977) could be caused by

the weaker forces of electrostatic attraction and repulsion.

The variation of IDs within irregular coordination polyhedra

also could somehow relate to the different values of attractive

electrostatic forces. The proposed model of extension of ID

from diatomic molecule (CN = 1) to crystal (CN = 6) is closely

related to the known `bond-strength±bond-length' relation-

ships (Pauling, 1960; Brown, 1988; O'Keeffe & Brese, 1991;

Gibbs et al., 1998). For instance, the lengths of a bond in

various crystal structures can be estimated by the following

equation:

R � R0 ÿ 0:37 ln S; �14�
where S = V/CN, V is the cation oxidation state (formal

charge), R0 is a distance constant for the appropriate cation±

anion pair and CN � 2 (Brown, 1988). This equation is

connected to the short-range B±M potential (Jansen et al.,

1992; Urusov, 1995) and does not account for the possible

empty space between ions. When applied to ionic crystals, (14)

re¯ects, to some extent, just the dependence between the

interatomic distance Rcr and the long-range Coulomb force of

attraction. Therefore, it would be worthwhile to compare the

resulting electrostatic forces acting along a given direction in a

crystal. The resulting forces are easily calculated based on

standard crystallographic formulae.

If CNs do not depend on the cation±anion ratio, as in the

anti¯uorite structure, cations coordinated in crystals with up

to four anions would be deformed and would retain covalent

bonding. For instance, one can conclude that there is a

considerable covalent contribution to the attraction between

magnesium and oxygen in spinel (sp), MgAl2O4, because its

dRcr is negative: using the data in Table 6 for periclase (pr),

MgO, dRcr(sp) = Rcr(sp) ÿ (Rcr ÿ dRcr)(pr) = 192 ÿ (210 ÿ
12) = ÿ6 pm. It is concordant with the small coordination

number of the cation (CN = 4) and the high hardness of spinel

(Frye, 1981). Conversely, increasing CN from 4 to 8 and above

would lead to a greater increase in the separation of the

counterions' electron shells. In these terms, the dependence of

cations' sizes on coordination numbers (Shannon & Prewitt,

1969; Shannon, 1976) can be reinterpreted. For instance, the

effective radius (IR) of a sodium ion varies from 102 pm to

139 pm for CN = 6±12 (Shannon, 1976). This is a straightfor-

ward consequence of the quantum-mechanical uncertainty of

ions' sizes. However, it is obvious that such a wide range would

result in a corresponding difference between the strengths of

electron densities and hence of covalent binding and/or

repulsion. Altogether, the combination of more or less

constant ionic radii with the deformations dRm and intershell

intervals dRcr is as ¯exible as the system of Shannon±Prewitt

tailor-made radii, but it is believed to have a more correct

physical ground. It is worth mentioning that Zachariasen

(cited by Kittel, 1956) in an unpublished work proposed an

equation like (2) and (3) and obtained values of the increment

�N (' dRm and dRcr, N ' CN) varying within the range

[ÿ50, 0, 19 pm] for CN = 1, 6 and 12, respectively.

According to the proposed model and obtained data, bonds

of monovalent and, in most of the structures, divalent ions

with halogens and oxygen have purely or essentially ionic

character. In the bonding of highly charged cations (Si4+, Ti4+,

Al3+ etc.) with oxygen, there should be a constantly present

covalent contribution, regardless of the coordination number.

It is dif®cult to decide where the wavefunctions or electron

density of ions can be neglected. The radii and deformations

obtained in x3.1 and Appendix A can be used as a zero-order

Acta Cryst. (2002). B58, 770±779 Viktor Ignatiev � Interatomic distances and sizes of ions 777

research papers



research papers

778 Viktor Ignatiev � Interatomic distances and sizes of ions Acta Cryst. (2002). B58, 770±779

approximation and should be speci®ed based on quantum-

mechanical calculations of the radii of free ions and accurate

analyses of electon-density maps of crystals and molecules.

It is noteworthy that there are two different ways to

describe empirically the static equilibrium condition of ions in

a crystal: equalizing either the attractive electrostatic forces

acting in opposite directions or the electrostatic and short-

range repulsion forces as derivatives of the respective poten-

tials as in (1). In general, these models deal with different sizes

of ions. While the former is physically more correct, the latter

is mathematically more suitable. Many excellent simulations

of crystal structures and calculations of their properties have

been made during the past three decades, for example, by

C. R. A. Catlow's group with the help of empirical repulsion

potentials (Freeman & Catlow, 1992; de Leeuw et al., 2000;

Wright et al., 1994). On the other hand, the empirical poten-

tials are rather crude (Crocombette, 1999), and to simulate a

wide range of chemical compositions in layer silicates by

transferable potentials (Sainz-Diaz et al., 2001), for example, is

hardly possible.

5. Conclusions

The most essential difference between the interatomic inter-

action in ionic crystals and molecules is the action of consid-

erably weakened attractive electrostatic forces in opposite

directions in the former.

In molecules, the charge transfer cannot be complete

because the Coulomb attraction is polar and there is an

interdependence between the electrostatic attraction, covalent

bonding and electronic repulsion. Here the interatomic

distance certainly depends on the sizes of the ions. Ions

considered as static deformable spheres are compressed.

In crystals, the compression is not obligatory for every ion:

it is present only in several near-surface layers. In the bulk of a

crystal, the ions may not have common boundaries. However,

the interaction of highly charged ions in substances like SiO2,

TiO2 and Al2O3 would retain covalent character.

The sum of the radii of the cation and the anion is de®nitely

larger than the ID in the molecule, but it can be smaller, equal

to or larger than that in the corresponding crystal.

APPENDIX A
Approximate evaluation of increments dRm and dRcr in
alkaline earth fluorides and oxides

Tables 5 and 6 present data for Rm, dRcrm, D0 and the esti-

mated dRm and dRcr in ¯uorides and oxides of alkaline earth

metals and beryllium. Other alkaline earth halides and chal-

cogenides have not been analysed because of the variety of

structures, the complicated geometry of the molecules, or the

lower electronegativity of S, Se and Te. The increments dRm

and dRcr were estimated using the cation IR and anion CR

radii (Fÿ 119 pm, O2ÿ 126 pm) according to Shannon (1976)

and (2), (3) and (4).

From comparison of the data in Tables 1, 5 and 6 it follows

that alkaline earth ¯uorides have the smallest values of dRcrm.

This is evidently caused by the Coulombic repulsion between

¯uorine ions (F0.nÿÐF0.nÿ) in the molecules. The common

feature in all of these tables is the relation between dRcrm and

D0. This demonstrates the strengthening of covalent bonding

in molecules from MgF2 and MgO to BaF2 and BaO like that

from NaF to CsF. Comparatively low values of the increment

dRcrm in BeF2 and BeO are not an exception. In crystal

structures of �-quartz and wurtzite, beryllium is four-coordi-

nated and retains covalent bonding (Blatov et al., 1999; West,

1988). In other words, it is still deformed, though to a lesser

extent. For this kind of compound, the inequalities

dRm > dRcrm and dRcr < 0 hold.

The trends of variation for the obtained values of the

increments dRm from beryllium to barium (Tables 5 and 6)

correspond to that of D0. The values of the increments dRcr

demonstrate that in the alkaline earth ¯uoride and oxide

crystals the counterions tend to be separated by an empty

space like those in the alkali halide crystals. The increment

tends to increase from Be to Ba ¯uorides and oxides. This

tendency satis®es the rules of increasing bond length [Brown

(1988); equation (14) in x4.2 of this paper] and ionicity

(Pauling, 1960) with increasing CN. The Ca2+ ion is probably

larger (RCa ' 105 pm), because the value of dRcr = 18 pm in

CaF2 is too high compared with the values for SrF2 and BaF2

(Table 5). The difference between the radii of Fÿ and O2ÿ ions

is probably larger as well, because the attraction between

Mg2+ and O2ÿ ions in MgO is stronger and dRcr is smaller than

between Mg2+ and Fÿ in MgF2.

Lower values of deformations in Ca, Sr and Ba ¯uorides

compared with those of MgF2 (Table 5) can be explained by a

different relation between the IDs and the overlap of electron

clouds in respective molecules. The former molecules are bent

(Gillespie & Hargittai, 1991). Both the nonlinearity of the

molecules and the great difference between D0(CaF2) and

D0(MgF2) point to the considerable participation of elongated

�-orbitals in bonding. In this instance, the overlap can be

strong regardless of the large internuclear distance. In crystals,

the ions become spherical. In such a case, the real overlapping

(deformation) of counterions' electron shells in molecules is

not equal to the deformation of the spheres and dRcrm is not a

suf®ciently reliable parameter. Hence one would expect the

true deformations in Ca, Sr and Ba ¯uoride molecules to be

about 10ÿ15 pm larger than the dRm values exhibited in

Table 5.

I thank I. D. Brown very much for helpful discussions.
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